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The formula? are given for the Fourier transforms of a number of helical structures; namely, 
a thin helical wire, a set of identical atoms spaced at regular intervals on a helix, and the general 
case of a group of atoms repeated by the operation of a.non-integer screw. General predictions are 
made concerning the intensitiw of the X-ray diffraction pattern of the synthetic polypeptide 
poly-y-methyl-L-glutamate, assuming that its structure is baaed on the a-helix suggested by 
Pauling & Corey. 

1. Introduction have interpreted the structures of the two polypeptides 
The following calculations were undertaken because which have so far given the best X-ray diffraction 
of current interest in the structures of certain synthetic pictures, namely poly-y-methyl-L-glutamate and poly- 
polypeptides. The preliminary X-ray data for these y-benzyl-L-glutamate, in terms of the a-helix de- 
polypeptides have been described by Bamford, Hanby scribed by Pauling, Corey & Branson (1951). In this 
& Happey (1951) and their i&a-red behaviour by structure the residues repeat along the helix with a 
Ambrose & Elliott (1951). Pauling & Corey (1961) spacing of about l-5 A in the chain direction, and 

Perutz (1951) has found that a strong meridional 
* Imperial chemicel Industries Fellow. reflexion of spacing 1.5 A is given by poly-y-benzyl- 
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L-glutamate. More recently this has also been observed 
hy Bamford, Brown, Elliott, Hanby & Trotter (1962) 
for poly-y-methyl-L-glutamate and for a number of 
other.polypeptides. As Perutz (1951) has also found 
that a l-5 A reflexion is given by certain proteins, 
it is possible that all these substances have basically 
a common structure. It is therefore important to 
establish the actual structure beyond doubt for at 
least one of them. 

The other general property of the u-helix is that it 
repeats exactly only after a number of turns. For 
poly-y-methyl-n-glutamate, which has a repeat of 
27 A in the chain direction, Pauling & Corey (1951) 
have suggested a helix of 18 residues, which goes 
round five times iu 27 A. The X-ray evidence is con- 
sistent with a hexagonal unit cell, with one chain 
der lattice point, so that all the chains are in identical 
orientations. The unit cell for poly-y-benzyl-L- 
glutamate is only pseudo-hexagonal and has not yet 
been definitely established. 

We have calculated first the transform of a thin 
helical wire. We have then derived the transform of a 
set of identical point atoms spaced at regular intervals 
on a single helix. We have next derived the formulae 
for the structure factors for the general case of a 
group of atoms, with each atom of the group repeated 
regularly on a helix. From these results we have been 
able to make certain general predictions, partly of a 
statistical nature, about the intensities to be expected 
from ,a helical structure containing a number of 
different atoms. We have considered poly-y-methyl- 
L-glutamate as a possible example, as it gives the 
simplest X-ray photograph. 

Preliminary accounts of the application of the theory 
(Co&ran BE Crick, 1952) and of the experimental data 
(Bamford et al., 1952) have already been published. 
The theory was also derived independently and simul- 
taneously by Dr A. R. STOKES (private communication). 

apart from unimportant constants of proportionality. 
This result can be written as 

W, py, t) 

=$lexp[tiikr oos(2~$--y)+zb}]dz, (2) 

where Be = Ee+qs and tan w = v/t. 

Fig. 1. (a) Carte&n (2, y, z) and cylindrical-polar (T, 91, z) oo- 
ordinetos of a point on 8 helix. (b) Corresponding coordinates 
of 8 point in reciprocal space. 

The integral (2) vanishes unless 5 = n/P, where n 
is an integer. This corresponds to the fact that the 
X-ray scattering from a helix which has an exact 
repeat after a vertical distance P, is confined to 
layer-lines at heights 5 = n/P in reciprocal space. 
Accordingly, we write (2) as 

This integral may be evaluated by using the identity 
2. The transform of a uniform helix 

s 

an 

We calculate first the Fourier transform (or con- exp (ix co6 pi) exp (inpl)* = 23zi”J,(X) , 
tinuous structure factor) of a uniform helix (for 
instance, a wire of infinitesimal thickness) of infinite takini X = 2nRr and y = 2nzlP. 

length, radius r and axial spacing P. If the helix is 
defined by the equations 

Jnoc) 
n-0 #x 

2 = r 00s (2nz/P) , 

1 B 

- 
y = r sin (27cz/P) , (1) 1 

¶. j 
2=2, J 

(see Fig. l), the value of the Fourier transform at a 
point (f,~, 5) in Fourier (reciprocal) space is given by 

where dV, is a volume element of the helix. Using (l), 
Fii. 2. Illustration of Beeeel functions. (Reproduced by kind 

and the fact that dV. is proportional to dz, 
permieaion of the publishers from Tables of Ftm&mu by 
Jahuke & Emde. New York: Dover Publications.) 
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The result is the C-axis, where it assumes a value which we may 
take to be unity. The process of convolution therefore 
reduces in this case to setting down the transform of 
the continuous helix with its origin pIaced at each of 
the points (0, 0, ‘3, (0, 0, +1/p), (0, 0, -VP), 
(0, 0, +2/p) etc. in turn, and taking the sum (see 
Fig. 3). The result is the transform of a discontinuous 
helix, and can be seen to be finite only in planes at 
height 

r = W+mlp , (4) 
on which it assumes the value J,(27zRr)exp[in(y+@c)]. 
Like 12, m can assume any integral value, positive or 
negative. If P/p cannot be expressed as a ratio of 

WC y, n/P) = J,PcW exp [+y+tn)l , (3) 

where .J, denotes the nth-order Bessel function. 
This gives the amplitude and phase of the X-ray 

scattering on the nth layer line. The function T has 
two notable features : (i)lTI = (J,(2nRr)l is inde- 
pendent of y, that is, the modulus of the transform 
has cylindrical symmetry. (ii) For small values of 
BnRr, IT/ decreases rapidly as n increases. This can 
be seen clearly from the illustration of Bessel functions 
given in Fig. 2. This figure also enables one to see 
where the transform will have maxima. 

3. The transform of a discontinuous helix 
We define a discontinuous helix as a set of points 
occurring with a vertical spacing p on a continuous 
helix. X-ray scattering is now imagined to take place 
from these points only. The scattering from a set of 
identical atoms in this configuration can be found by 
multiplying the transform of the set of points by the 
atomic scattering factor. 

Consider a function H which is zero everywhere 
except on a continuous helix, where it assumes the 
value unity, and another function K which is zero 
everywhere except on a set of horizontal planes of 
spacing p, where it assumes the value unity. The 
product KH of these two functions is a discontinuous 
helix. It follows that the transform of KH is the trans- 
form of K, convoluted (folded) with that of H. The 
transform of H was given in the previous section 
(equation (3)) ; that of K is easily proved to be zero 
except on an infinite set of points of spacing l/p along 
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Fig. 3. (a) illustrates the fact that the transform of a helix of 

axial spacing P ia finite only in planes at height C = n/P, 
while (a) illustrates the fact that the transform of a set of 
planes of spacing p is finite only at points (0, 0, 5) with 
t 5: mjp. (c) is obtained by setting (a) down with ita origin 
at height C = 0, and again at C = I/p. It is therefore part 
of the transform of a discontinuous helix; the complete 
transform is obtained by setting (a) down with its origin 
at every point C = m/p in turn, and is therefore finite only 
in planes at height C = n/P+m/p. 
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whole numbers, planes at height n/P+m/p, for all 
values of n and of m, fill the whole of reciprocal space. 
This case is considered in a later section. If, on the 
other hand, P/p can be expressed as a ratio of whole 
numbers, the transform is confined to a set of planes. 
For example, in the particular case corresponding to 
poly-y-methyl-L-glutamate, P = 6.4 d, p = 1.5 A 
and P/p = 18/5. From (4) we then have 

5Pc = 5n+18m 
= I (say) . (5) 

The transform is, in this case, confined to layers for 
which 5 = n/P+m/p = l/c A-1 with c = 27 A, corre- 
sponding, of course, to the fact that the discontinuous 
helix now has an exact repeat after 27 A. For any 
one value of 1 the transform of the discontinuous helix 
is now given by 

the sum being over all values of n which are solutions 
of (5). For example, when 

Z=O, n= . . . . -36, -18, 0, +18, $36, . . . , 

and when 

E= 1, n= ,.., -25, -7, +11, +29, +47, . . . . 

The difference between successive values of 7t is 
always 18. 

In Table 1 we have listed the values of n for values 
of 1 between -3 and +20, and values of m  from 
-5 to +6, for the case of poly-y-methyl-L-glutamate. 
This includes all values of n up to 18 for the layer- 
lines considered. 

The same result for the transform of a discontinuous 
helix which has an exact repeat after a number of 
turns of the helix have been made, can be obtained 
by writing down the structure-factor equation in the 
normal way, and expanding it as a series of Bessel 
functions. The method we have given is more general, 
and makes the solution easier to grasp. 

As an example of (6) we can take 

F(R, y, 0) = J,,CJnW+J,,P7W exp P3~(y+t741 
+J-,,(2nRr) exp [-lSi(~+&c)J+. . . 

= J,,(2nRr)-2J,, (2nRr) cos 18y+. . . . 

The departure from cylindrical symmetry involves 
only the terms J,,(BTcB~) etc., which will usually be 
negligible compared with Jo (23cRr). 

Again 

P(R, p, l/27) = J-, (2nRr) exp C-7i(y+&n)l 

+J,,(2nRr) exp [lli(~+&)]+. . . . 

On evaluating IFI in this case, it is found to have an 
ISfold axis of symmetry. To the extent that all other 

terms can be neglected compared with J,, it has 
cylindrical symmetry. 

Again, 

FM, Y, 5/W = J @ W  exp [~(~+4n)l 
+J-,, (2nRr) exp [---17+p+h)l 

+J,,WW =P EWy+44+. . . . 
Here IFI has almost complete cylindrical symmetry, 
as only the first term is appreciable, except for 2nRr 
greater than about 15. It can be shown that however 
many terms are involved, IFI has an 18-fold axis of 
symmetry over the entire diffraction pattern. 

It is of interest to consider what happens if the helix 
is slightly deformed, so that it repeats exactly only 
after a larger distance.* For example, suppose the 
B-helix, instead of having 3.60 residues per turn, had 
about 3.58, so that the structure repeated after 17 
turns containing 61 residues. We can most easily see 
what happens by fixing attention on a given Bessel 
function, whose position is defined by n and m. 

Now since 
,=;+;, 

and if d(l/P) and 8(1/p) are small, the Bessel function 
under consideration will move only a small distance 
in reciprocal space, especially if n and m  are also small. 
As the true unit cell becomes larger, and the layer 
lines more closely spaced together, Bessel functions 
which previously occurred at the same level will now 
be distributed over different layer lines. As has been 
stated, if P and p are incommensurable, the transform 
fills the whole of reciprocal space, but it can do so only 
by employing Bessel functions of very high order, 
which in practice can be ignored. The more im- 
portant Bessel functions of lower order will occur very 
close to positions given by taking commensurable 
approximations to P and p. Consideration of the full 
expressions given in the next section (equation (7)) 
shows that the values of the terms relevant in practice 
are only changed infinitesimally. The precision of the 
determination of P and p is of course limited by ex- 
perimental error. If the structure were disordered, so 
that the effective local values of P and p varied, one 
would expect diffuse layer lines in the region corre- 
sponding to the average values of P and p. This 
appears to be the cue for certain of the co-polymers 
(Bamford et ccl., 1952). 

4. Structure-factor calculation 
We shall now consider how numerical calculations can 
be made when exact coordinates are assumed for all 

* The ideas in this section were clarified during discussion 
with Dr L. Brown. 
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the atoms in a helical structure. We have to consider 
how the contributions of a number of sets of atoms 
on helices of different radii, and which may start off 
with the first atoms‘not at x = T, y = 0, z = 0, but 
at x = r cos v, y = r sin v, z = z, are to be combined. 
The transform of a discontinuous helix, starting with 
the last-mentioned coordinates, is 

F exp [i( --n~+27cZz/c)] . 

This follows from the fact that the displacement of 
the first point to z in a cell of length c corresponds 
to a multiplication of the transform by the factor 
exp [Zn&!z/c]. The rotation of the helix through an 
angle 9, to bring the first point to the coordinates 
given above, results in its transform being rotated in 
the same direction, and by the same amount. A point 
then at (R, y, t) obviously came from (R, y-9, 5). 
Hence if a particuIar term in the series for F had 
the form J,(BnRr) exp [in(y+3~)], it now becomes 

J,,(2zRr) exp [i(ny-nq7+)nn+2nlz/c)J . (7) 
In poly-y-methyl-L-glutamate there are ten atoms per 
residue, and each chain consists of sets of identical 
atoms occurring at the points of ten different dis- 
continuous helices. It follows that the structure factor 
Fc of one such unit, for 1= 1 for example, is given 
bY 

F,@, y, l/c) = 

-,~&J,($~RI,) exp [a{-7(yl+~n)+7~~+2~zi/c}l+ 

I~~,J~I(2~R~j~exp[i(ll(y+~~)-ll~j+2~zj/O)l+. . . . 

The general expression is 

FAR, y, l/c) = 

For the purposes of computation it would be useful 
to graph the functions 

c, = ~0s (ny)J,,WW , 
8, = sin (ny)J,,(2nRr) . 

If we write (7) in the form 

J,(Md =xp My+ 41, where E = &c-1p+2nlz/nc, 

then (7) becomes C,(y+ E) +i&(y+ E). If, for exampIe, 
one prepares a contour map of C, against cylindrical 
coordinates (27zRr, y), one can then place over it a 
grid whose intersections correspond to the reciprocal- 
lattice points for the value of r appropriate to a 
particular set of atoms. By turning this grid to the 
angle E (which one has to compute) one can read off 
C,,(y+e) for all the reciprocal-lattice points. This 
process can be repeated for each atom, and the 

contributions summed; similarly for S,(y+ E). This is 
particularly valuable when the phases of the Fourier 
components are required. 

The theory can easily be extended to cover cases 
where there is more than one chain per lattice point 
by considering a chain displaced from the origin to 
the point (x0, y,,, z,,) and turned about its axis by an 
angle qua. The contribution of this chain to the trans- 
form is obtained by multiplying the general expression 
(7) by a factor 

exp [2ni(Ax,la+ky,/~+~~,lc)l exp E--+d . 
It is interesting to note that the helix which con- 

sists, chemically, of one polypeptide chain, is in fact 
only one of the possible solutions which are consistent 
with the general helical arrangement. ‘For example, 
a discon$inuous right-handed helix which has p= 1.5 A, 
and makes 5 turns in 27 A may be regarded as two 
separate but intertwining left-handed discontinuous 
helices, each with p = 3.0 A and making 4 turns in 
27 A. Such structures will generally not be stereo- 
chemically feasible. Conversely, if one has to consider 
a structure which actually does consist of several 
chains intertwined, it is convenient for computation 
to imagine the residues, however they’may be con- 
nected chemically, to be associated with a single 
‘primitive’ helix, which is chosen as the one for which 
both the z translation and the angle of rotation be- 
tween successive residues have the smallest values. 
All calculations can be made in terms of this one helix, 
using the theory given above. 

5. Application to poly-~-methyl-L-glutamate 
As we have seen, we may imagine the infinite poly- 
peptide chain as made up from a number of sets of 
atoms, each set consisting of atoms occurring at inter- 
vals p on a helix of axial spacing P and radius r. The 
number of sets of atoms composing one chain will be 
equal to the number of atoms per residue of the 
polypeptide; each set will in general occur on a helix 
of different radius, and if we take one helix as a 
standard, the others will in general be rotated and 
translated relative to the first. This helical con- 
figuration (defined by P and p) of every set of atoms 
is in itself enough to enable us to make general 
predictions about the intensities of the X-ray re- 
flexions to be expected from such a structure-there 
is no need for detailed assumptions about the exact 
relative positions of atoms belonging to the same 
residue to be made. This is a situation which occur 
very seldom in X-ray analysis; usually a crystal- 
,structure problem must be solved in detail before 
anything at all can be said about the atomic arrange- 
ment, and conversely only when the structure is 
known completely can the intensities of the X-ray 
reflexions be calculated. In this case, the basis of the 
predictions is that reflexions to which all sets of atoms 
make only a small contribution will be absent, whereas 
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reflexions to which a number of sets may contribute 
are likely to be strong. The contribution of the jth 
set of atoms is of course the sum over a few values 
of n of terms of the form (7), so that, if the values of 
J,(27cRr) are very small for all values of r which 
occur in the structure, the corresponding reflexion 
must be absent. When this quantity is large for many 
of the values of P which we might expect to be present, 
the corresponding reflexion is not necessarily strong, 
as the phase part of the expression (7) may effect a 
cancellation when the contributions from all sets are 
summed. On the average, however, such reflexions 
will be strong. 

We assume, therefore, that poly-y-methyl-n-glu- 
tamate is based on the a-helix proposed by Pauling 
& Corey, so that the structure of one infinite chain 
can be produced from one residue by the operation 
of a non-integer screw of 100” and 1.5 A. We now 
use the property of Bessel functions, illustrated in 
Fig. 2, that for small values of the argument 2nRr, 
the function J,,(SnRr) is very small when n is large. 
The greater the value of w, the eater 2zRr can be 
before J,,(SlcRr) becomes appreciable. Now, whatever 
the precise form of the side groups, no atom can lie 
further than about 8 A from the axis of the helices 
if reasonable bond lengths are assumed. For any set 
of atoms making up the main chain (including the 
b-carbon atom)-and this accounts for half the total- 
r is not greater that 3.3 & according to Pauling & 
Corey (1951). The part of the transform covered by 
the observed diffraction data does not extend beyond 
R = 0.36 ii-1 (2 =j= 0), so that in considering the 
contribution of any set of atoms of the main chain 
to any reflexion, a value of 2nRr greater than 7.2 will 
not occur. Even when the contributions of atoms of 
the side groups are considered, 2zRr will not exceed 
17. The implications of this can be seen by considering 
the reflexions on the first layer, which are contributed 
to by Bessel-functions of order 7 and 11. For the 
reflexion (loll), R = 0.097 A-l, and J,(2nRr) is 
quite negligible for r < 7 A. Only the outermost atoms 
of the side groups could contribute weakly to this 
reflexion. A sin&r calculation shows that the con- 
tribution of atoms of the main chain to any reflexions 
on this layer for which R < 0.35 A-1 is always very 
small, although atoms of the side group could make 
a small contribution. No reflexions are observed ex- 
perimentally on this layer. Intensities on the second 
layer depend on J,(bRr), so that low-order re- 
flexions are again likely to be weak, a@ the main 
contributors to reflexions (1122) and (2022) must be 
the atoms of the side groups. The third layer involves 
J,(2zRr), and we might expect to find some reflexions 
on .it, while on the. fourth the intensities depend on 

J,&Rr), so we would expect nothing except possibly 
at comparatively large values of R. On the other hand, 
1= 6 is contributed to by J,(2mRr), and many sets 
of atoms can make large contributions. In short, we 
can make the general prediction that ‘layer lines to 
which only high-order Bessel functions contribute will 
be weak or absent, and those to which low-orders 
contribute will be strong’ (Co&ran & Crick, 1952). 
The experimental data of Bamford et a,?. (1952) agree 
with this prediction in a striking manner, no reflexion 
appearing on any layer line unless a Bessel function 
of order 4 or less is involved. In fact the agreement is 
too good, and suggests that the upper limit to the 
value of 2zRr is more nearly 7 than 17, that is, that 
the effect of the atoms of the side groups is in some 
way reduced. This could be due to the side groups 
having a greater amplitude of thermal vibration, or 
being more disordered, than the atoms of the main 
chain. On the other hand, the assumption that the side 
groups are all equivalent, i.e. that both the main 
chain and side groups have an Is-fold screw axis, 
may not be correct. The space group, which is probably 
C6,, requires only that every third side group should 
be equivalent. If all are equivalent, their relationship 
to neighbouring parts of their own chain is the same 
for each, but their relationship to neighbouring parts 
of adjacent chains falls into three different types. 
Thus there is no compelling reason for all the side 
groups to have the same orientation relative to the 
maiu chain. 

The evidence thus suggests very strongly that the 
main chain of poly-y-methyl+-glutamate is based on 
the a-helix, or a very similar helix, but it is not 
possible by this rather general approach to decide 
whether the side groups also conform strictly to this 
arrangement. 

In conclusion, we would like to express our ap- 
preciation of the interest shown in this work by Prof. 
Sir Lawrence Bragg, Prof. J. M. Robertson and Dr 
M. F. Perutz. 
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